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Over-parameterization

• In classic statistics, over-parameterization seems to hurt
generalization
　

• However, an evolving an evolving line of works in machine
learning observes empirical evidence that suggests, to the
surprise of many statisticians, over-parameterization is not
necessarily harmful.
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Interpolation

• Example : Deep neural networks
　

• Many machine learning models such as DNN,Random forest
are trained until the training error vanishes to zero meaning
that they are able to perfectly interpolate the data while still
generalizing well.
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Minimum L-1 norm interpolator

• p : number of parameter , n : number of data
　

• generalization error : out-of-sample risk
　

• Risk(θ) = E ((xnew θ̂ − ynew )
2)
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Minimum L-1 norm interpolator

• When it comes to the overparameterized regim where p>n ,
the system of equations yi =< xi , θ > is under determined.
　

• This implies the existence of multiple regression parameters θ

that interpolate the training data perfectly.
　

• Among all possible interpolates, the focal point of this paper is
the minimum L-1 interpolater.

θ̂Int := argminθ∈Rp ||θ||1 subject to yi =< xi , θ > , i=1,...,n
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Example of overparameterization

• y =

[
0
1

]
, X =

[
1 0 0
1 1 1

]
, θ =

θ1

θ2

θ3


　

• y = Xθ’s solution is θ1 = 0, θ2 + θ3 = 1
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Multi Descent
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Approach in the paper

• In this paper, they are trying to investigate the Risk curve of
minimum L1-norm interpolator by using asymptotics of Risk.
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Setting

• In this paper, they have gathered n i.i.d noisy training data
drawn from a linear model

y = Xθ∗ + z , y = [yi ]i=1,..,n,X = [x1, ..., xn]
t

where θ∗ ∈ Rp, xi ∈ Rp : random design vector
　

• xi ∼iid N(0, 1
n Ip), i = 1, ..., n

　

• z ∼ N(0, σ2In)
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Linear Sparsity

• θ∗i ∼iid ϵPM
√
δ + (1 − ϵ)P0

　

• M : some given quantity that determines the magnitude of a
non-zero entry.
　

• scaler factor
√
δ is introduced soley for notational converience

which ensures that the signal − to − noise − ratio(SNR) obeys
　

SNR := E((xT θ∗)2)
σ2 = ϵM2

σ2
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Notation

• ynew =< xnew , θ
∗ > +znew ,

xnew ∼ N(0, 1
n Ip), znew ∼ N(0, σ2)

　

• Risk(θ̂) := E ((x tnew θ̂ − ynew )
2)

　

• Risk(θ̂; δ) := limn/p=δ n,p−→∞Risk(θ̂)
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Theorem 1

Suppose that 0 < δ < 1 , δ = n
p , setting (i.d.d gaussian desing and

i.i.d gaussian nose) and linear sparsity Then the generalization of
error of the minimum L-1 norm interpolator satisfies the following
properites:
　

(1) There exists two constants 1 < η1 < η2 < ∞ such that
Risk(θ̂Int ; δ) decreases with p/n within the range p/n
∈ (1, η1) ∪ (η2,∞)

　

(2) Risk(θ̂Int ; δ) approaches the risk of the zero estimator(Risk(0))
as p/n tends to infinity.
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Theorem 1

(3) For any fixed signal-to-noise ratio(SNR) , there exists a
constant ϵ∗ > 0 such that if the sparsity ratio ϵ obeys ϵ < ϵ∗, then
one can find a region within the range p/n ∈ (η1, η2) such that
Risk(θ̂Int ; δ) increases with p/n
　

(4) In addtion, for every given δ , there exists a threshold ϵ̃(δ) such
that Risk(θ̂Int ; δ) decreases with p/n at this particular point δ as
long as the sparsity ratio ϵ satisfies ϵ ≤ ϵ̃(δ)

17



Theorem 1 insights

• (1) identifies two non-overlapping regions within the
over-parameterizaed regime that exhibit risk descent.
　

• (2) the minimum L1 -norm interpolator is essentially no better
than a trivial estimator (i.e., the zero estimator) when the
over-parameterized ratio p/n is overly large.
　

• (3) indicates that the risk in between the above-mentioned two
regions exhibits contrastingly different behavior depending on
the sparsity ratio.
　

• (4) reveals that at any over-parameterized ratio, the
generalization risk can be decreasing with p/n as long as the
sparsity ratio is small enough.
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Theorem 2

Suppose that the setting is equal to before and the empirical
distribtuion of θ∗ converges weakly to a probability measure Pθ.
Consider and given 0 < δ < 1. If E (θ2) < ∞ and P(θ ̸= 0) > 0,
then the prediction risk of the minimum L1-norm interpolator obeys
below.

limn/p=δ n,p→∞Risk(θ̂Int) =a.s r∗2

Here, r∗, α∗ stands for the unique solution to the following system
of equations

r2 = σ2 + 1
δE ((η(θ + rZ ;αr)− θ)2)

　

δ = P(|θ + rZ | > αr)

where θ ∼ Pθ and Z ∼ N(0, 1) and is independent of θ 20



Theorem 2 insights

• we can readily examine how r∗ varies with δ

　

• By taking a close look at the solutions, they can analyze the
shape of the risk curve and establish Theorem 1.
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Gaussian Experiments

• Data are generated from a linear model in setting
　

• The sparsity level is 0.05 and SNR=4
　

• The theoretical curve is computed by solving the equations in
Thm2
　

• For each p/n, they generate a random instance, compute the
minimum L-1 norm interpolator and its risk, and repeat this
procedure for 30 times. They report the averasge risk and error
bar over 30 independent runs.

23



Gaussian Experiments
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